





Outliers Detection vs. Control Questions to Ensure Reliable Results in Crowdsourcing. A Speech Quality Assessment Case Study

**Rafael Zequeira Jiménez**, Laura Fernández Gallardo, Sebastian Möller Quality and Usability Lab, Technische Universität Berlin HumL@WWW2018 – 1st International Workshop on Augmenting Intelligence with Humans-in-the-Loop









### **Motivation**

Speech quality is important for the Quality of Experience (QoE) in:



audio books





virtual or robotic conversational agents

\* The collected ratings can be used to train AI systems to predict the speech quality automatically *Quality &* 

HumL@WWW2018 - 1st International Workshop on Augmenting Intelligence with Humans-in-the-Loop







### **Motivation**



Speech quality experiments traditionally conducted in Laboratory

- Professional audio equipment
- Soundproof room
- Limited number of participants





### Crowdsourcing Study

- Conducted a speech quality assessment experiment
- Crowd-workers were presented with 20 speech stimuli
- o Opinion about overall quality gathered in a 5-point scale







### Speech Material:

- Database number 501 from ITU-T Rec. P.863
- $\circ$  4 Germans were recorded per condition
- o 200 speech stimuli (9s long on avg.)
- 50 degradation conditions:
  - $\circ$  narrow- & wide- band
  - $\circ$  temporal clipping
  - o signal-correlated noise,
  - o combinations of these degradations
- The database contains quality ratings to the 200 stimuli made by 24 different native German listeners, in accordance to ITU-T Rec. P.800







### **Study Conditions:**

- $\circ~$  Address the study to native Germans
- Collect 24 ratings per stimulus from different listeners
- $\circ~$  Experiment in accordance with the ITU-T Rec. P.800







**Crowdsourcing Platform:** 



- o German based CS platform
- Reported 1 million global users in September 2017
- Most of their users are from German speaking countries



HumL@WWW2018 – 1st International Workshop on Augmenting Intelligence with Humans-in-the-Loop Page 8





### **Crowdsourcing Experiment**



- Screening task to recruit German listeners
- Speech quality assessment task:
  - Qualification phase
  - Speech quality assessment







# **Crowdsourcing Experiment**

### Qualification

- consent request
- use of headphone
- audio Math trapping question
- 5 stimuli as an anchor

### Speech Quality Assessment

- introduction
- environment record up to 15s
- 20 stimuli to rate
- 2 trapping Question







# **Crowdsourcing Experiment**









### Results

- 87 workers participated in the study
- 8 workers failed the Qualification phase
- o 53 unique listeners:
  - o 60,4% males
  - o 96,2% native Germans
  - $\circ$  provided 4840 ratings
- the collected ratings account for 24 to 26 assessment from different listeners per file







### Crowdsourcing vs. Laboratory

• Spearman's rank-order correlation:

 $\circ$  rho = 0,864 (p<0,001)

- Monotonic relationship between Lab- and CS- MOS
- Root Mean Square Error:
  - o RMSE=0,474









## Filtering from unreliable workers

- Work in [1] and [2] recommends:
  - $\circ~$  the use of trapping question, to catch inattentive users
  - $\circ$  when the user fail, then all of their ratings are discarded

This approach was effective in [1] and improved slightly the results in [2]

 B. Naderi, T. Polzehl, I. Wechsung, F. Köster, and S. Möller, "Effect of Trapping Questions on the Reliability of Speech Quality Judgments in a Crowdsourcing Paradigm," in Interspeech, 2015, pp. 2799–2803.
 R. Zequeira Jiménez, L. Fernández Gallardo, and S. Möller, "Scoring Voice Likability using Pair-Comparison: Laboratory vs. Crowdsourcing Approach," in Ninth International Conference on Quality of Multimedia Experience (QoMEX), 2017, pp. 1–3.



Page 14





## Filtering from unreliable workers

A worker is unreliable or untrustworthy when:

- $\circ~$  s/he fails the trapping question in the SQAT
- $\circ~$  s/he fails the Qualification more than once







## Filtering from unreliable workers

A worker is unreliable or untrustworthy when:

- $\circ~$  s/he fails the trapping question in the SQAT
- o s/he fails the Qualification more than once







- Discarded 320 ratings in total from W4, W5, W7
- W6 did not conduct the SQAT

# SQAT



#### Method:

"filtering by trapping question" (F-TQ)

- Spearman's rank-order correlation on 4520 ratings:
  - o rho = 0,862 (p<0,001)</p>

When discarding all the workers (F-TQ'):

∘ rho = 0,854 (p<0,001)









## **Outlier** Detection

outliers:

- ratings above 1,5 interquartile range (IQR)
- $\circ~$  depicted by circles

extreme outliers:

- ratings at 3,0 IQR or above
- o depicted by asterisks







### **Outlier Detection**

• Discarded 122 ratings identified as extreme outliers

Method:

# "filtering by outlier detection 1" (F-OD1)

- Spearman's rank-order correlation:
  - o rho = 0,863 (p<0,001)</p>

still not better than the first coefficient when no data was discarded





### **Outlier Detection 2**

 Discarded 1480 ratings from 12 workers that were outliers or extreme outliers three times or more [5].

Method:

# "filtering by outlier detection 2" (F-OD2)

• Spearman's rank-order correlation:

o rho = 0,867 (p<0,001)</p>





### **Alternative Approach**

- Applied **F-OD1** and **F-OD2** and discarded 1529 ratings in total.
- Identify the outliers made by all the workers that failed the trapping questions. Then removed 17 ratings.

Method:

# F-TQ-OD

- Spearman's rank-order correlation on 3294 ratings:
  - rho = 0,868 (p<0,001)







### **Results Overview**

| Approach | Ratings<br>discarded | rho    | RMSE  |
|----------|----------------------|--------|-------|
| -        | 0                    | 0,864* | 0,474 |
| F-TQ     | 320                  | 0,862* | 0,476 |
| F-TQ'    | 780                  | 0,854* | 0,480 |
| F-OD1    | 122                  | 0,863* | 0,477 |
| F-OD2    | 1480                 | 0,867* | 0,474 |
| F-TQ-OD  | 1546                 | 0,868* | 0,479 |

\*p < 0,001







### **Results Comparison**

| Approach | Method                                    | Workers<br>Discarded | Ratings<br>Discarded |
|----------|-------------------------------------------|----------------------|----------------------|
| [6]      | gold standard<br>questions                | 25%                  | 75%                  |
| [7]      | verification<br>questions                 | -                    | 34,3%                |
| F-TQ-OD  | trapping question +<br>outliers detection | 22%                  | 31,9%                |

[6] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz, "Quantification of YouTube QoE via Crowdsourcing," in 2011 IEEE International Symposium on Multimedia, 2011, pp. 494–499.
[7] J. Redi and I. Povoa, "Crowdsourcing for Rating Image Aesthetic Appeal: Better a Paid or a Volunteer Crowd?," in International ACM Workshop on Crowdsourcing for Multimedia, 2014, pp. 25–30.



Page 23





### Discussion

| Approach | Ratings<br>discarded | rho    | RMSE  |
|----------|----------------------|--------|-------|
| -        | 0                    | 0,864* | 0,474 |
| F-TQ     | 320                  | 0,862* | 0,476 |
| F-TQ'    | 780                  | 0,854* | 0,480 |
| F-OD1    | 122                  | 0,863* | 0,477 |
| F-OD2    | 1480                 | 0,867* | 0,474 |
| F-TQ-OD  | 1546                 | 0,868* | 0,479 |

- We recommend to employ F-OD1 in case "high correlation" is not a priority. This is the most cost effective approach.
- We recommend to use F-TQ-OD for more accurate results.





### Conclusion

- Adapted successfully a Laboratory listening test to Crowdsourcing
- Obtained a strong and statistically significant Spearman correlation: *r*=0.868
- Tested outliers detection and trapping question to filter the data from unreliable ratings
- Proposed a combination of outlier detection and trapping question that leads to more accurate results
- Further testing is required to determine for which type of experiment our approach can be applied.



### Thank you for your Attention!

Rafael Zequeira Jiménez rafael.zequeira@tu-berlin.de @zequeiraj